Supplementary Information includes 8 tables (Excel format) that provide information about the genetic sequences, metadata for statistical analyses and morphological data, and 4 figures in jpeg format. Supplementary tables: Table S1

Дата канвертавання17.04.2016
Памер18.16 Kb.

Supplementary Information includes 8 tables (Excel format) that provide information about the genetic sequences, metadata for statistical analyses and morphological data, and 4 figures in JPEG format.

Supplementary tables:

Table S1. Information about the primer sets used in this study for PCR amplification of ribosomal genes of the host Tiarina sp. and the symbiotic microalga Symbiodinium.

Table S2. 18S rDNA sequences of ciliates (order Prorodontida) used for phylogenetic analyses. GenBank accession numbers in bold indicate the sequences of Tiarina sp. produced in this study.

Table S3. 28S rDNA sequences of Symbiodinium (clades A-H) used for phylogenetic analyses. GenBank accession numbers in bold indicate the sequences of Symbiodinium clade A produced in this study.

Table S4. ITS2 sequences of different Symbiodinium sub-clade types within clade A used for haplotype network reconstruction. GenBank accession numbers in bold indicate the sequences produced in this study.

Table S5. V9 rDNA sequences of Tiarina sp. (host) and the corresponding symbiont Symbiodinium used to interrogate the Tara Oceans metabarcoding dataset.

Table S6. Contextual oceanographic parameters and the relative abundance of V9 reads of Symbiodinium (representing five distinct V9 sequences), Tiarina sp. (genotypes 1 and 2), and Tiarina fusus at each Tara Oceans station to perform correlation network analyses.

Table S7. Comparison of different morphological characters of seven ciliates within the Colepidae family, including the newly isolated ciliate Tiarina sp.

Table S8. Significant P-values of the different correlations between environmental physico-chemical parameters and the distribution and relative abundance of V9 rDNA reads of ciliates and Symbiodinium.

Supplementary figures:

Figure S1. Schematic diagram of the ribosomal operon (18S and 28S rRNA genes, and ITS) showing the position of the different primers used in this study to PCR amplify sequences of the ciliate Tiarina and the symbiotic microalgae Symbiodinium.

Figure S2. Microscopy images of the photosymbiosis between the ciliate Tiarina sp. (the host) and its intracellular symbiotic microalgae collected in surface oceanic waters. A: One live cell of Tiarina sp. collected in the Mediterranean Sea (Naples, Italy) in brightfield microscopy (Image courtesy of Diana Sarno). The ciliate is swimming with the help of numerous cilia at the surface of the cell, and harbours microalgal cells in the cytoplasm (golden cells). B-D: 3D reconstructions of symbiotic specimens imaged with Confocal Laser Scanning Microscopy (CLSM). B: Cilia of the ciliate are highlighted in green (DiOC6). C: The nuclei of the ciliate (cyan) and the symbiotic microalgae (blue) have been reconstructed from the Hoechst fluorescence signal, and the chloroplasts of the microalgae are highlighted by the red auto-fluorescence of the chlorophyll. D: Putative cell division events of Symbiodinium cells are surrounded and could have occured at the early (a), middle (b) and late (c) stage of the cycle.

Figure S3. Phylogenetic tree (BioNJ) inferred from partial 28S rDNA sequences of Symbiodinium clade A (477 aligned nucleotide positions) with 100 pseudo-replicates. Compared to the 28S rDNA phylogenetic tree in Figure 3, the "temperate clade", only represented by relatively short sequences, was specifically included here to investigate whether Symbiodinium associated to the ciliate Tiarina (sequences in bold) belongs to this clade.

Figure S4. Mapping of the relative abundance of rDNA V9 reads strictly identical to the V9 sequence of the ciliate Tiarina fusus in Tara Oceans stations (surface samples and 20-180 µm size fraction). The color gradient indicates the relative abundance of V9 reads from green to red for low to high values, respectively. Black dots indicate that no V9 reads have been detected in the station.

Bibliography from the Supplementary information

Barth D, Tischer K, Berger H, Schlegel M, Berendonk TU. (2008). High mitochondrial haplotype diversity of Coleps sp.(Ciliophora: Prostomatida). Environmental microbiology 10(3):626-634.

Chen X, Gao S, Liu W, Song W, Al-Rasheid KAS, Warren A. (2012). Taxonomic descriptions of three marine colepid ciliates, Nolandia sinica spec. nov., Apocoleps caoi spec. nov. and Tiarina fusa (Claparède & Lachmann, 1858) Bergh, 1881 (Ciliophora,Prorodontida). Int J Syst Evol Microbiol 62: 735-744.

Chen X, Wang Y, Long H, AL-Rasheid KA, Warren A, Song W. (2010). Morphological studies on two marine colepid ciliates from Qingdao, China, Nolandia orientalis spec. nov. and Pinacocoleps similis (Kahl, 1933) comb. nov.(Ciliophora, Colepidae). European journal of protistology 46(4): 254-262.

Chen X, Warren A, Song W. (2009). Taxonomic studies on a new marine ciliate, Apocoleps magnus gen. nov., spec. nov.(Ciliophora, Colepidae), isolated from Qingdao, China. Journal of Ocean University of China 8(4): 317-321.

Dopheide A, Lear G, Stott R, Lewis G. (2008). Molecular Characterization of Ciliate Diversity in Stream Biofilms. Applied and Environmental Microbiology 74: 1740-1747.

Foissner W, Kusuoka Y, Shimano S. (2008). Morphology and gene sequence of Levicoleps biwae n. gen., n. sp. (Ciliophora, Prostomatida), a proposed endemic from the ancient Lake Biwa, Japan. J Euk Microbiol 55: 185-200.

Foissner W, Berger H, Schaumburg J. (1999). Identification and ecology of limnetic plankton ciliates. Informationberichte des Bayer. Landesamtes für Wasserwirtschaft Heft 3/99.

Foissner W. (1984). Infraciliatur, Silberliniensystem und Biometrie einiger neuer und wenig bekannter terrestrischer, limnischer und mariner Ciliaten (Protozoa: Ciliophora) aus den Klassen Kinetofragminophora,Colpodea und Polyhymenophora.Stapfia 12:1-165.

Gómez F, López‐García P, Moreira D. (2011). Molecular phylogeny of dinophysoid dinoflagellates: the systematic position of Oxyphysis oxytoxoides and the Dinophysis hastata group (Dinophysales, Dinophyceae) 1: Molecular phylogeny of Dinophysales. Journal of Phycology 47(2): 393-406.

Kahl A. (1930). Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 1. Allgemeiner Teil und Prostomata. Tierwelt Dtl. 18: 1-180.

Lemloh ML, Marin F, Herbst F, Plasseraud L, Schweikert M, Baier J, Bill J, Brümmer F. (2013). Genesis of amorphous calcium carbonate containing alveolar plates in the ciliate Coleps hirtus (Ciliophora, Prostomatea). Journal of Structural biology 181(2):155-161.

Lepère C, Demura M, Kawachi M, Romac S, Probert I, Vaulot D. (2011). Whole-genome amplification (WGA) of marine photosynthetic eukaryote populations. FEMS Microbiology Ecology 76(3): 513-523.

Pochon X, Pawlowski J, Zaninetti L, Rowan R. (2001). High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Marine Biology 139(6): 1069-1078.

Shaked Y, de Vargas C. (2006). Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic foraminiferal hosts. Mar Ecol Prog Ser 325: 59-71.

Scholin CA, Herzog M, Sogin M, Anderson DM. (1994). Identification of group‐and strain‐specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. Journal of Phycology 30(6): 999-1011.

Yi Z, Dunthorn M, Song W, Stoeck T. (2010). Increasing taxon sampling using both unidentified environmental sequences and identified cultures improves phylogenetic inference in the Prorodontida (Ciliophora, Prostomatea). Mol Phylogenet Evol 57: 937-941.

База данных защищена авторским правом © 2016
звярнуцца да адміністрацыі

    Галоўная старонка