Хранилища данных (курс лекций)




старонка13/16
Дата канвертавання24.04.2016
Памер0.88 Mb.
1   ...   8   9   10   11   12   13   14   15   16

Некоторые термины и понятия


Наряду с суммами в ячейках OLAP-куба могут содержаться результаты выполнения иных агрегатных функций языка SQL, таких как MIN, MAX, AVG, COUNT, а в некоторых случаях — и других (дисперсии, среднеквадратичного отклонения и т.д.). Для описания значений данных в ячейках, используется термин summary (в общем случае в одном кубе их может быть несколько), для обозначения исходных данных, на основе которых они вычисляются, — термин measure, а для обозначения параметров запросов — термин dimension (переводимый на русский язык обычно как «измерение», когда речь идет об OLAP-кубах, и как «размерность», когда речь идет о хранилищах данных). Значения, откладываемые на осях, называются членами измерений (members).

Говоря об измерениях, следует упомянуть о том, что значения, наносимые на оси, могут иметь различные уровни детализации. Например, нас может интересовать суммарная стоимость заказов, сделанных клиентами в разных странах, либо суммарная стоимость заказов, сделанных иногородними клиентами или даже отдельными клиентами. Естественно, результирующий набор агрегатных данных во втором и третьем случаях будет более детальным, чем в первом. Заметим, что возможность получения агрегатных данных с различной степенью детализации соответствует одному из требований, предъявляемых к хранилищам данных, — требованию доступности различных срезов данных для сравнения и анализа.

Поскольку в рассмотренном примере в общем случае в каждой стране может быть несколько городов, а в городе — несколько клиентов, можно говорить об иерархиях значений в измерениях. В этом случае на первом уровне иерархии располагаются страны, на втором — города, а на третьем — клиенты (рис. 10).

Рис. 10. Иерархия в измерении, связанном с географическим положением клиентов


Отметим, что иерархии могут быть сбалансированными (balanced), как, например, иерархия, представленная на рис. 10, а также иерархии, основанные на данных типа «дата—время», и несбалансированными (unbalanced). Типичный пример несбалансированной иерархии — иерархия типа «начальник—подчиненный» (ее можно построить, например, используя значения поля Salesperson исходного набора данных из рассмотренного выше примера), представлен на рис. 11.

Иногда для таких иерархий используется термин Parent-child hierarchy.



Рис. 11. Несбалансированная иерархия


Существуют также иерархии, занимающие промежуточное положение между сбалансированными и несбалансированными (они обозначаются термином ragged — «неровный»). Обычно они содержат такие члены, логические «родители» которых находятся не на непосредственно вышестоящем уровне (например, в географической иерархии есть уровни Country, City и State, но при этом в наборе данных имеются страны, не имеющие штатов или регионов между уровнями Country и City; рис. 12).

]

Рис. 12. «Неровная» иерархия
Отметим, что несбалансированные и «неровные» иерархии поддерживаются далеко не всеми OLAP-средствами. Например, в Microsoft Analysis Services 2000 поддерживаются оба типа иерархии, а в Microsoft OLAP Services 7.0 — только сбалансированные. Различным в разных OLAP-средствах может быть и число уровней иерархии, и максимально допустимое число членов одного уровня, и максимально возможное число самих измерений.


Заключение:

В данном разделе мы ознакомились с основами OLAP. Мы узнали следующее:



  • Назначение хранилищ данных — предоставление пользователям информации для статистического анализа и принятия управленческих решений.

  • Хранилища данных должны обеспечивать высокую скорость получения данных, возможность получения и сравнения так называемых срезов данных, а также непротиворечивость, полноту и достоверность данных.

  • OLAP (On-Line Analytical Processing) является ключевым компонентом построения и применения хранилищ данных. Эта технология основана на построении многомерных наборов данных — OLAP-кубов, оси которого содержат параметры, а ячейки — зависящие от них агрегатные данные.

  • Приложения с OLAP-функциональностью должны предоставлять пользователю результаты анализа за приемлемое время, осуществлять логический и статистический анализ, поддерживать многопользовательский доступ к данным, осуществлять многомерное концептуальное представление данных и иметь возможность обращаться к любой нужной информации.

Кроме того, мы рассмотрели основные принципы логической организации OLAP-кубов, а также узнали основные термины и понятия, применяемые при многомерном ЭШелизе. И, наконец, мы выяснили, что представляют собой различные типы иерархий в измерениях OLAP-кубов.

В следующей статье данного цикла мы рассмотрим типичную структуру хранилищ данных, поговорим о том, что представляет собой клиентский и серверный OLAP, а также остановимся на некоторых технических аспектах многомерного хранения данных.



Типичная структура хранилищ данных


Как мы уже знаем, конечной целью использования OLAP является анализ данных и представление результатов этого анализа в виде, удобном для восприятия и принятия решений. Основная идея OLAP заключается в построении многомерных кубов, которые будут доступны для пользовательских запросов. Однако исходные данные для построения OLAP-кубов обычно хранятся в реляционных базах данных. Нередко это специализированные реляционные базы данных, называемые также хранилищами данных (Data Warehouse). В отличие от так называемых оперативных баз данных, с которыми работают приложения, модифицирующие данные, хранилища данных предназначены исключительно для обработки и анализа информации, поэтому проектируются они таким образом, чтобы время выполнения запросов к ним было минимальным. Обычно данные копируются в хранилище из оперативных баз данных согласно определенному расписанию.

Типичная структура хранилища данных существенно отличается от структуры обычной реляционной СУБД. Как правило, эта структура денормализована (это позволяет повысить скорость выполнения запросов), поэтому может допускать избыточность данных.

Для дальнейших примеров мы снова воспользуемся базой данных Northwind, входящей в комплекты поставки Microsoft SQL Server и Microsoft Access. Ее структура данных приведена на рис. 13.

Рис. 13. Структура базы данных Northwind


Основными составляющими структуры хранилищ данных являются таблица фактов (fact table) и таблицы измерений (dimension tables).
1   ...   8   9   10   11   12   13   14   15   16


База данных защищена авторским правом ©shkola.of.by 2016
звярнуцца да адміністрацыі

    Галоўная старонка