П. С. Лопух гідралогія сушы частка 2 (агульная гідралогія)




старонка12/13
Дата канвертавання14.03.2016
Памер2.05 Mb.
1   ...   5   6   7   8   9   10   11   12   13

6.8. Цячэнні
Цячэннямі называецца гарызантальнае перамяшчэнне водных мас пад уздзеяннем розных метэаралагічных фактараў: ветру, сцёку з вадазбору і з самога вадаёма, неаднарорднасці шчыльнасці вады, змянення атмасфернага ціску і іншых. Цячэнні характарызуюцца хуткасцю і напрамкам, які паказвае куды перамяшчаюцца водныя масы. Асноўымі сіламі, якія вызываюць цячэнні ў азёрах, з’яўляюцца: уздзеянне ветра на водную паверхню (датыкальная напруга) і гравітацыйныя сілы (гарызантальная састаўляючая сілы цяжару). Акрамя таго, на цячэнні ўздзейнічаюць другарадныя сілы, якія ўзнікаюць толькі пры руху вады і могуць значна паўплываць на ўжо ўзнікшы рух вады. Да іх адносяцца: сіла ўнутранага трэння, сіла інэрцыі (інэрцыонныя сілы), адхіляючая сіла кручэння зямлі (сіла Каріоліса) і цэнтрабежная сіла. Сіла ўнутранага трэння з аднаго боку, вызывае перадачу момант руху ад аднаго слоя да другога, с другога – прыводзіць да дысіпацыі (разсейванню) энэргіі і паслабляе цячэнне.

Значны ўплыў на цячэнні у азёрах робяць марфаметрычныя асаблівасці катлавін: абрыс вадаёма ў плане, памеры акваторыі, глыбіня і рэль’еф дна. Аднак, найбольшае значэнне ў буйных азёрах маюць ветравыя і шчыльнасныя цячэнні, а ў малых праточных – сцёкавыя цячэнні.



Ветравыя, ці дрэфавыя цячэнні ўзнікаюць у выніку трэння ветравых патокаў на водную паверхню і ціску яго на схілы ветравых хваляў. Паміж хуткасцю ветра (U, м/с) і хуткасцю вызванага ім паверхневага цячэння (Uo, м/с) існуе залежнасць:

Uo = A U ,

дзе - геаграфічная шырата, А – ветравы каэфіцыент, які вагаецца ў межах 1-1,5 %, але ў некаторых вадаёмах дасягае 3-6 %. Хуткасці дрэйфавых цячэнняў на буйных вадаёмах звычайна не перавагае 30-60 см/с. Так, на Анежскім возеры пры ветру 8 м/с яны дасягаюць 30 см/с, пры ветру 15 м/с (моцны вецер) – 50 см/с, на Байкале пры моцных асенніх вятрах – 40-70 см/с.



Згонна-нагонныя працэсы. З глыбінёй хуткасць цячэнняў у выніку трэння, і асабліва ва ўмовах вертыкальнай стратыфікацыі шчыльнасці вады, памяншаецца. Напрыклад, максімальная хуткасць паверхневых цячэнняў Ладажскага возера дасягалі 30 см/с, на глыбіні 25 м – каля 20 см/с, а на глыбіні ўжо 50 м – усяго 12-13 см/с. Дрэфавыя цячэнні вызываюць згоны і нагоны – перамяшчэнні водных мас, якія ўзнікаюць у выніку захопу паветрам верхняга слою вады у падветранага берага (згоннага) і перамяшчэнню яго да наветранага (нагоннага). У выніку працяглага устойлівага стану такіх умоў узнікае адпаведны ухіл воднай паверхні. Рознасць узроўня вады на згонным і нагонным участках акваторыі (∆h) вызначаецца па формуле:

h = 2*106 (U2 D / gH) cos α,



дзе α – вугал паміж па галоўнай восі возера і напрамкам ветру, D хуткасцьветру на вышыні флюгера (10 м), Н – сярэдняя глыбіня возера па профілю па напрамку перамяшчэння хваляў. Пры згонах і нагонах узнікаюць кампенсацыйныя цячэнні, накіраваныя у супрацілеглым напрамку дрэфавым цячэнням. Яны, як правіла, праходзяць на глыбіні ці ў прыдонных слаях вадаёма.Згонна-нагонныя ваганні ўзроўню найбольш значныя у адмелых берагоў, дзе кампенсацыйныя цячэнні па прычыне трэння аб дно значна паслаблены, чым на значных глыбінях. Так, у паўднёвых адмелых берагоў Ладажскага возера і ў мелкаводных залівах Арала яны дасягаюць 2 метраў.

Шчыльнасныя цячэнні добра выражаны на буйных і глыбокіх азёрах,дзе найбольш ярка выражана вертыкальная неаднароднасць размеркавання тэмпературы і звязанай з ёю шчыльнасць вады. Гэты тып цячэнняў добра выражаны ў перыяды награвання і ахалоджвання вадаёмаў, калі розніца тэмпературы цэнтральных і прыбярэжных участкаў дасягае максімума. У такіх азёрах шчыльнаснай цыркуляцыяй можа быць ахоплены слой вады да 45 м (Ладажскае возера) і нават да 100-150 м (Байкал). Хуткасці такіх цячэнняў у паверхневых слаях дасягаюць 25-35 см/с, а на глыбіні 50 м – 10-12 см/с. Дзякуючы ўздзеянню сілы Каріоліса, шчыльнасныя цячэнні на глыбіні ўтвараюць замкнёныя гарызантальныя цыркуляцыі, накіраваныя ў перыяд награвання вадаёма супраць гадзіннікавай стрэлкі, а ў перыяд ахалоджвання – па гадзіннікавай стрэлцы.

Сцёкавыя цячэнні. Даволі часта ў праточных (сцёкавых) азёрах узнікаюць сцёкавыя цячэнні. У гэтых выпадках ухіл воднай паверхні возера, асабліва невялікіх азёр, ствараецца прытокам і сцёкам. У большасці выпадках у азёрах такія перакосы воднай паверхні невялікія. Адпаведна малыя і хуткасці сцёкавых цячэнняў. Як правіла, ў буйных азёрах яны не перавышаюць 10-20 см/с. Акрамя таго, значны ўплыў на сцёкавыя цячэнні робіць вецер. Таму “у чыстым выглядзе” сцёкавыя цячэнні добра выражаны толькі зімой.
6.9. Ветравыя хвалі і сейшы
Галоўнай прычынай узнікненя хваляў на азёрах з’яўляецца ўздзеянне ветру на іх паверхню. Ветравыя хвалі з’яўляюцца гравітацыйнымі, так як уздзеянне ветра на водную паверхню выводзіць паверхню вады із раўнавагі, а сіла цяжару застаўляе яе вяртацца ў першапачатковы стан. Ваганні часцінак вады пры дастатковай глыбіні возера адбываецца па арбітам. Пры малых глыбінях трэнне іх аб дно ўздзейнічае на на рух вады і арбіты часцінак з глыбінёй прыймаюць форму элліпса з большай воссю, выцягнутай па напрамку руху хваляў. У дна часцінкі вады рухаюцца толькі ў гарызантальным напрамку. Сячэнне некалькіх паслядоўных хваляў вертыкальнай плоскасцю ў галоўным напрамку іх руху прадстаўляе ветравы профіль, на якім добра відаць асноўныя элементы ветравых хваляў.

Сярэдняя хвалявая лінія – гарызантальная ліні, якая перасякае хвалявы профіль так, што агульныя плошчы вышэй і ніжэй гэтай лініі роўныя. Грабень хвалі – частка хвалі, якая знаходзіцца вышэй сярэдняй хвалявай лініі, вяршыня хвалі – самая высокая кропка на грэбні. Упадзіна (лагчына) хвалі – частка хвалі, якая знаходзіцца паміж двумя суседнімі грабянямі ніжэй сярэдняй хвалявай лініі, падэшва хвалі – самая нізка кропка на лагчыне хвалі. Фронт хвалі – лінія вяршыняў грабянёў у плане. Галоўны напрамак распаўсюджвання хваляў напрамак, перпендыкулярны фронту хвалі. Вышыня хвалі (h) – перавышэнне вяршыні хвалі над падэшвай. Даўжыня хвалі (λ) – адлегласць паміж двумя суседнімі вяршынямі ці падэшвамі. Крутасць хвалі (ε) – адносіны вышыні хвалі да яе даўжыні:

ε = h/ λ.

Перыяд хвалі (τ) – прамежак часу, на працягу якога часцінкі вады завяршаюць поўны абарот па сваім арбітам ці прамежак часу паміж праходжаннем вяршыняў двух суседніх хваляў праз фіксаваную кропку вадаёма. Узрост хвалі (В) – адносіны хуткасці хвалі (С) да хуткасці ветру (U):

В = С/ U.

Хуткасць хвалі (С) – хуткасць перамяшчэння грэбня хвалі ў галоўным напрамку яе распаўсюджвання. Звычайна хуткасць хвалі вызначаецца як хуткасць перамяшчэння грэбня хвалі на адлегласці, роўнай яе даўжыні:

С = λ/t,

дзе t – прамежак часу, за які хваля (грэбень хвалі) праходзіць адлегласць, роўную яе даўжыні.

Параметры ветравых хваляў залежаць ад хуткасці ветру (U), працягласці яго дзеяння (Т), разгону хвалі (D) – шляху, які праходзіць хваля з моманту ўзнікнення, глыбіні возера (Н) (калі яна не перавышае палову даўжыні хвалі).

Пры павялічэнні хуткасці ветру і даўжыні разгону ветравых хваляў, параметры хваляў ( h і λ) павялічваюцца. Аднак, для кожнай хвалі існуе адпаведны разгон (дзейны разгон), на якім хуткасць руху хваляў становіцца практычна роўнай хуткасці ветру, пасля якой вышыня хвалі не расце. Такое ветравое хваляване паверхні возера назваецца устойлівым (сфарміраваным) хваляваннем.

З глыбінёй хваляване у выніку трэння паміж часцінкамі вады затухае, г.зн. вышыня хвалі памяншаецца пры нязменнай яе даўжыні і перыяду. На глыбіні возера, роўнай даўжыні хвалі, хваляванне практычна не назіраецца. Вышыня хвалі памяншаецца прыкладана у 500 раз.

У выніку розніцы цічску ветру на наветраныя і падветраныя схілы хвалі, яна прыймае несіметрычную форму нават на глыбокай вадзе. Яшчэ больш значныя змяненні хваляў адбываюцца пры падыхдзе хваляў да мелкаводдзяў, дзе пачынае уплываць трэнне іх аб дно. Гэтае трэнне пачынае шплываць з глыбіні, меншай паловы даўжыні хвалі (Н < λ /2). Ніжняя частка хвалі падвяргаецца большаму тармажэнню ў сувязі з трэннем аб дно, чым грэбень хвалі. Пярэдні схіл хвалі становіцца больш стромкім, чым тыльны. Пры дальнейшым памяншэнні глыбіні да крытычнай (Нкр = 2 h) хваля разбураецца (апракідваецца). Разбурэнне хваляў у берага называецца прыбоем, а на мелкаводдзях у адкрытай акваторыі – буруном. Ад адвеснага ці стромкага берага (з вуглом нахілу больш 45о), глыбіні у якога больш крытычнай, хвалі адбіваюцца. У выніку налажэння (інтерферэнцыі) падыходзячых да берага і адбітых (вярнуўшыхся) ад берага хваляў утвараюцца стаячыя хвалі. Вышыня стаячых хваляў значна большая, чым падыходзячых да берага. Калі у стромкага берага глыбіня менш крытычнай, разбурэнне хваляў адбываецца з выкідваннем масы вады апракінутага грабяня на значную вышыню. Такі выкід валодае значнай энэргіяй і сілай. На палогіх прыбярэжных водмелях буйныя хвалі разбураюцца далёка ад берага. Водмель, такім чынам, абараняе бераг ад дальнейшага размыву. Пад уздзеяннем прыбярэжных водмеляў адбываецца рэфракцыя хваляў – змяненне напрамку іх руху.

З’ява налажэння адной на другую некалькіх хваляў называецца інтерференцыяй. Прыватны выпадак – стаячая хваля – налажэнне прамой і адбітай хвалі з аднолькавым перыядам. Пры сустрэчы сістэмы хваляў розных напрамкаў утвараецца таўкатня, г.зн. складанае хваляванне з хаатычным чаргаваннем бугроў і ўпадзін.



Метады разліку параметраў хвалі. Метады разлікаў элементаў хваляў (h, λ, τ) улічваюць уздзеянне на ветравое хваляванне асноўных яго фактараў – хуткасці ветру (U, м/с), разгону (D, км), глыбіні возера на разліковым адрэзку (Н, м). Для буйных азёр і вадасховішчаў былі прапанаваны формулы У.Г.Андрыянава:

H = 0,0208 U5/4 D1/3

Λ = 0,304 U * D1/2

Азёрныя хвалі адрозніваюцца ад марскіх большай стромкасцю. Іх крутасць (ε ) дасягае 1/8. Вышыня хваляў на буйных азёрах можа дасягаць значных велічын: на Ладажскім возеры да 5-6 м, на Анежскім да 4,5. Ва ўмовах Беларусі на возеры Нарач і Аілейскім вадасховішчам пры разгонах ветравых хваляў 6-10 км магчыма ўзнікненне хваляў вышынёй да 1,5 м.



Дэнівіліцыя паверхні і сейшы на азёрах. Пад уплывам розных сіл у вадаёмах узнікаюць перакосы воднай паверхні (дэнівіляцыя). Пасля астановкі ўздзеяння сілы, якая вызвала дэнівіляцыю) уся водная маса возера імкнецца вярнуцца у стан раўнавагі, а водная паверхня пачынае вагацца. Гэтыя ваганні назхываюць стаячымі хвалямі. Аднак яны ахопліваюць значныя па плошчы часткі акватрыі. Паступова такія ваганні паверхні затухаюць пад уздзеяннем сіл трэння і называюць звычайна сейшай. Асноўныя прычыны ўзнікнення сейшаў: змена паветранага ціску і вецер, якія вызываюць сгонна-нагонны перакос узроўня паверхні возера. Пры сейшах у вадаёмах заўсёды ўзнікае адна ці некалькі ліній (кропак), у якіх узровень вады застаецца нязменным. Гэта так званыя вузлы ( вузлавыя лініі), у залежнасці ад колькасці якіх сейшы бываюць аднавузлавыя, двухвузлавыя, трохвузлавыя і г.д. Па абодва бакі ад вузлавой лініі амплітуда ваганняў узроўняў узрастае і дасягае максімума ў кропках (на лініях) пучнасці. Асноўныя элементы сейшы (стаячай хвалі): перыяд (τ), амплітуда (А) – максімальнае адхіленне ўзроўня воднай паверхні ў той ці другой кропцы вадаёма ад яе палажэння ў стане раўнавагі (спакою). Вышыня (Н) – розніца паміж максімальным і мінімальным ўзроўнямі па профілю воднай паверхні (акваторыі).

Перыяд сейшы (стаячай вады), (τ) прыблізна можна вызначыць па формуле Мерыана, якая была выведзена для прамавугольнага вадаёма даўжынёй l з пастаяннай шырынёй і глыбінёй (Н). Для аднавузлавой сейшы формула мае выгляд:

Τ = 2l / n√gH,

а т.як. 2 / g = 0,6306, то τ = 0,6306 * l / H. Для n – вузлавой сейшы формула прыймае выгляд:



Τ = 2l / n√gH.

З разгледжаных вышэй двух формул выцякае, што найбольшым перыядам адрозніваюцца аднавузлавая сейша і, што ў глыбокіх азёрах перыяд сейш карацей, чым у мелкаводных пры той жа даўжыні вадаёма. Так, сярэдняя велічыня перыяда сейшы глыбокага Жэнеўскага возера (l = 72 км, Нср = 173 м) роўна 73 мінуты, а мелкаводнага Платтенскага возера (l = 76 к м, Нср = 3 м) – ужо 10-12 гадзін.

Сейшы суправаджаюцца цячэннямі, хуткасць якіх звычайна не перавышаюць некалькіх см/с, але у вузкіх залівах і пралівах могуць быць значнымі – у Якімварскім заліве Ладажскага возера да 0,60-0,80 м/с, у праліве возера В.Мядзьведжае ў Паўночнай Амерыке - 1,8-2,7 м/с. Хуткасць сейшавых цячэнняў (с) можна прыблізна вылічыць па формуле:

С = Нс √g/H,

Дзе Нс вышыня сейшы.

Параметры сейш на азёрах вельмі адрозніваюцца і залежаць ад марфаметрчных характарыстык іх катлавін і метэаралагічных умоў. Так, на Байкале назіраліся сейшы з перыядам (τ) ад 44 мінут да 4-6гадзін і вышынёй (Нср) 12-14 см, на возеры Балхаш – з τ = 22-24 гадзіны і Нср мах = 38 см, на Аральскім моры τ сейш быў роўны 1828 гадз. пры Нср 24 см. , а максімальная 1-1,3 м. На возеры Эры перавагаюць сейшы з сярэдняй вышынёй 20-30 см, аднак максімальная дасягала 2,5 м.

Пры рознцы шчыльнасці вады азёр па вертыкалі ўзнікаюць унутраныя сейшы. Перыяд іх дзеяння ўзрастае з павялічэннем розніцы шчыльнасці слаёў вады. На прэсных азёрах яны ўзнікаюць толькі летам, пры прамой тэрмічнай стратыфікацыі і рэзкай розніцы тэмператур вады эпілімніона і гіпалімніона. У мінеарльных азёрах яны звязаны розніцай салёнасці слаёў па вертыкалі. Яны могуць працягвацца і пасля затухання сейш у паверхневых слаях вады і асабліва прыкметны пасля шторма. Пры сейшах часта назіраюцца перыядычныя ваганні тэмпературы на адной і той жа глыбіні – тэмпературныя сейшы. Сейшы ўзнікаюць і на буйных вадасховішчах. Напрыклад, у прыплаціннай частцы Цымлянскага вадасховішча назіраюцца аднавузлавыя сейшы з перыядам 2 гадз. 20 мін. І вышынёй 5-8 см.

Сейшы ўздзейнічаюць на некаторыя элементы гідралагічнага рэжыму возера – вызываюць ваганні тэмператур, утрымання кісларода, завіслых рэчываў на розных глыбінях, перамяшчэнне значных па аб’ёму водных мас, вадаабмен паміж адкрытымі і прыбярэжнымі зонамі акваторыіі азёр.

6.10. Перамешванне водных мас азёр
З рознымі відамі руху вады у вадаёмах (хваляваннем, цячэннямі, сейшамі) звязана перамешванне – двухбаковы перанос (канвекцыя) мас вады з аднаго слоя ў другі. Разам з аб’ёмамі вады перамяшчаюцца раствораныя і завіслыя рэчывы, хімічныя элемепнты, газы, запасы цяпла. Перамешванне водных мас прыводзіць да раўнамернага размеркавання фізіка-хімічных і біялагічных характарыстык у ахопленых абменам слаях вады. Асноўную ролю ў рэжыму вадаёмаў выконвае турбулентнае перамешванне - свабодная і вымушаная канвекцыя. Малекулярны абмен у выніку малых значэнняў малекулярнай дыфузіі, цеплаправоднасці і трэння, значна не ўплывае на рэжым азёр. Інтенсіўнасць перамешвання звязана як з магутнасцю дзейнічаючых фактараў, так і ўстойлівасцю воднай масы, якая характэрызуецца вертыкальным градыентам шчыльнасці вады. В.Шмідтам (1915) было паказана, што устойлівасць воднай масы прэснага возера () роўна колькасці работы, неабходнай для перавода сістэмы паслойнага размеркавання шчыльнасці (і тэмператур) у другую сістэму з аднолькавай шчыльнасцю (тэмпературай) па ўсяму возеру. Узнікненне свабоднай канвекцыі магчыма ў азёрах толькі прыняуўстойлівай тэмпературнай стратыфікацыі – вясной пры награванні вады да 4о С і восенню пры ахалоджванні да 4о С. У гэтыя сезоны свабодная канвекцыя настолькі вялікая, што турбулентнае перамешванне можна і не ўлічваць. Пры стратыфікацыі асноўную ролю выконвае турбулентнае перамешванне. Ветравое турбулентнае пермешванне адбываецца як ў выніку дзеяння хваляў, так і дзеяння дрэйфавых цячэнняў. За ніжнюю мяжу пранікнення хвалявага перамешвання прыймаецца глыбіня Нх = λ /2. Глыбіня, на якую пранікае дрэйфавае цячэнне (Нц) , ці глыбіня трэння па Экману, у многа разоў больш Нх і дрэйфавае перамешванне выконвае ў глыбокіх вадаёмах істотную ролю. Для глыбокіх вадаёмаў (Н > λ /2) каэфіцыент хвалявага перамешвання (Ах) можна вызначыць па формуле С.У.Дабраклонскага:

Ах = Р ρ (h2 / τ),

дзе h – вышыня хваляў, τ перыяд хвалі, Р = 4,4 *10-3. Для вызначэння каэфіцыента перамешвання (Ац), вызванага цячэннямі, прыймаецца формула:



Ац = γ / (4 ρК) Uа Н,

дзе Uа хуткасць ветру, м/с, Н – глыбіня вадаёма, м, К – ветравы каэфіцыент, ρ – шчыльнасць вады, г/м3, γ – пастаянная велічыня, роўная 10-3 – 3,25 * 10-6, кг/м3. Каэфіцыент А улічваецца для разліку масы вады. Пры разліках на аб’ёмы выкарыстоўваецца каэфіцыент тэмператураправоднасці К = А/ ρ, см2/с.

Перамяшчэнне заключаных у вадзе завіслых часцінак, раствораных рэчываў, цяпла пры вертыкальным перамешванні вызначаецца залежнасцю:

S = -A (ds/dz),

дзе S – колькасць дадзенага элемента, які праходзіць у адзінку часу праз адзінку гарызантальнай плошчы, абмежаванай ізабатай на глыбіні z, ds/dz – вертыкальны градыент гэтага элемента.


6.11. Гідрахімічныя асаблівасці

Мінералізацыя і хімічны склад вады азёр фарміруецца і змяняецца ў выніку ўздзеяння прыродных і антрапагенныхфактараў. Роля антрапагенных фактараў узрастае па меры гаспадарчага выкарыстання тэрыторыі вадазбораў. Для азёрных вод характэрны занальныя адрозненні складу і канцэнтрацыі раствораных рэчываў па тэрыторыі і значныя ваганні па часу. Дзякуючы запаволенаму вадаабмену, на фоне геаграфічнай занальнасці ў хімізму вады азёр значна адлюстроўваецца ўплыў азанальных фактараў (геалагічнай будовы, рэльефа, марфалогіі катлавін), якія прыводзяць да неаднароднсці вод унутры кожнага раёна і ў кожным вадаёме. Геаграфічная занальнасць праяўляецца ў павялічэнні мінералізацыі і змене хімічнага складу пры пераходзе ад лішкавага і дастатковага ўвільгатнення тэрыторыі да засушлівага. Мінералізацыя вады буйных азёр лясной зоны не перавышае некалькіх дзесяткаў мг/л (Анежскае 30, Целецкае каля 70 мг/л). У саляных азёрах арыдных раёнаў яна перавышае 200-300 г/кг (Эльтон – 256 г/кг).



Салявы баланс возера. Хімічныя асаблівасці вады разглядаліся ў раздзеле хімічных і фізічных уласцівасцей вады. Таму характэрыстыка асноўных пяці груп у дадзеным раздзеле не разглядаюцца. Але ніжэй прыводзіцца характэрыстыка салявога балансу возера:

Sк = Sн + Sпр + Sгр + Sа - Sсц - Sгр - Sв - Sос ,
дзе Sк і Sн - колькасць соляў у вадаёме ў канцы і пачатку разліковага перыяду; паступленне соляў у возера за разліковы перыяд: Sпр – з паверхневым прытокам, Sгр – з грунтовымі водамі, Sа – з атмасфернымі ападкамі і ветрам; расход соляў з возера за разліковы перыяд: Sсц і Sгр – з паверхневым і падземным сцёкам, Sв - з ветравым вынасам, Sос – на ўтварэнне донных адкладаў.

Салявы баланс цесна звязаны з водным балансам. У салявым балансу прэсных азёр асноўную ролю выконвае паступленне соляў з паверхневым сцёкам і іх вынас выцякаючымірэкамі і ручаямі. Так, у Ладажскім возеры Sпр складае 96 % прыхода соляў, а Sсц амаль усе 100 %. У прыходнай частцы салявога балансу мінеральных азёр падземныя воды выконваюць значную ролю, у расходнай галоўныя кампаненты – садка салей у самім вадаёме і прыбярэжных залівах (“сорах”). Так, у возеры Балхаш да будаўніцтва Капчагайскага вадасховішча Sпр даваў 71 %, Sгр - 24 % прыходнай часткі баланса, а садка карбанатаў у возеры – 55 % страт, у сорах – 36 %. Мінералізацыя вады азёр увільгатнённай зоны знаходзіцца ў адваротнай залежнасці ад вадаабмену, таму што пры малым вадаабмене ў возеры затрымліваюцца воды паўнаводдзя, што зніжае сярэднюю мінералізацыю вады. Са змяненнем велічыні мінералізацыі вады адбываецца змяненне іх салявога складу – метамарфізацыя. Метамарфізацыя звязана з садкай соляў па меры канцэнтрацыі раствораў, у паслядоўнасці, якая вызначаецца як іх растваральнасцю, так і шэрагам іншых фактараў звязаных з фізіка-хімічнай раўнавагай.


6.12. Біялагічныя асаблівасці
Відавы склад і колькасць водных арганізмаў – гідабіонтаў – цесна звязана зфізіка-хімічнымі асаблівасцямі вод і рэжымам водных аб’ектаў, занальнымі і азанальнымі асблівасцямі іх гідралагічнага рэжыму. Некаторыя гідрабіонты прыспасабляюцца (адапціруюцца) да навакольнага асяроддзя. У прцэсу сваёй жыццядзейнасці яны ўплываюць на якасць вады і элементы рэжыма водных аб’ектаў. У некаторых выпадках гідабіонты істотна змяняюць гідрабіялагічны рэжым азёр.

Складаныя ўзаемаадносіны гідрабіонтаў і асяроддзя пражывання вывучае экалогія (oikos - дом, месца жыхарства) – навука аб узаемаадносінах арганізмаў і асяроддзя. Умовы жыцця неаднолькавы як у розных вадёмах, так і на розных участках аднаго і таго ж вадаёма. Аднак у кожным вадаёме існуюць участкі з аднароднымі ўмовамі для жыцця гідрабіонтаў, якія называюцца біатопамі. Кожны біатоп насяляе адпаведная група арганізмаў (раслін і жывёл), найбольш прыстасаваных да яго – біяцэноз.

Кожны біяцэноз узаемадзейнічае са сваім біатопам і ў выніку утвараецца больш менш устойлівая сістэма – экасістэма ці біягеаценоз, які ўключае як арганічную частку – участак воднай масы ці дна з іх рэжымам, так і насяляемыя іх арганізмы. Фарміраванне ітрансфармацыя біягеацэнозаў адбываецца пад уздзеяннем нескалькіх груп фактараў: абіатычных – элементаў нежывой прыроды (гідралагічных, геалагічных, кліматычных), біатычных – водных арганізмаў і антрапагенных – дзейнасці чалавека.

Гідрабіонты, якія пераносяць уздзеянне фактара, называецца эўрыбіонтнымі, якія жывуць толькі пры малых ваганнях фактара – стэнабіонтнымі (eurus шырокі, stenos - вузкі, bios – жыццё). Звычайна ацэньваюцца адносіны арганізмаў не толькі да комплекса фактараў, але і да кожнага з іх паасобку – тэмпературы (стэнатэрмныя і эўрытэмныя) і г.д. Стэнабіонтныя арганізмы могуць існаваць ці пры высокіх, ці пры нізкіх значэннях фактара. Так, напрыклад, пры высокай тэмпературы – тэрмафільныя (filio – люблю), пры нізкай – крыафільныя (krios – холад) і г.д. Некаторыя гідрабіонты не пераносяць высокіх значэнняў таго ці другога фактара, напрыклад, солягалафобныя (galos – соль, fobus – боязь), нізкай тэмпературы – крыафобныя і г.д. Па месцы жыхарства сярод гідрабіонтаў выдзяляецца некалькі аснлоўных груп. Планктон (plankto – лунаючый) – жыхары воднай тоўшчы, якія не прыстасаваны пераадолець рух вады і перамяшчацца на значную адлегласць па гарызанталі. У сваю чаргу планктон падзяляецца на некалькі груп: фітапланктон (раслінны планктон) прадстаўленрознымі водарасцямі; зоопланктон (жывёльны планктон) – прасцейшымі, ракападобнымі, калаўраткамі; бактэрыпланктон – бактэрыямі. Памеры планктэраў у большасці мікраскапічна малыя, удзельная іх вага блізкая да ўдзельнай вагі вады і пагэтаму яны перамяшчаюцца (мігрыруюць) у вадзе ў завіслым стане. Многія прадстаўнікі зоопланктона могуць перамяшчацца па вертыкалі на значныя глыбіні. Да нектона (nektos – плаваючы) адносяцца водныя жывёлы, якія насяляюць тоўшчу вады, але не прыстасаваны да актыўнага плавання, пераадоліць рух вады і перамяшчацца на значную адлегласць.

Нектон (рыбы) мігрыруюць па вадаёмам у пошуках ежы, а для нерасту некаторыя віды іх выходзяць за межы вадаёмаў – у рэкі. Бентас (bentos – глыбіня) жыхары дна, падзяляюцца на фітабентас і зообентас. Да бентасу адносяцца вышэйшыя водныя расліны, чэрві, малюскі, грыбкі, бактэрыі. Адзін з іх жыве на паверхні дна, другія зарываюцца ў грунт. Некаторыя прадстаўнікі зообентаса могуць падымацца ў водную тоўшчу і нават актыўна плаваць (нектабентас). Асноўным фактарам, які вызначае жыццедзейнасць гідрабіонтаў, з’яўляецца іх жыўленне. Фітапланктон – адзіная група водных арганізмаў, якая ажыццяўляе аўтатрофнае жыўленне – паглынанне з вады малекул раствораных неарганічных злучэнняў, біягенных элементаў і стварэнне з іх на святле арганічных рэчываў свайго цела. Гетэратрофнае жыўленне ўжо гатовым арганічным рэчывам характэрна ўсім другім гідрабіонтам.

Адпаведна характару жыўлення і пераўтварэння імі рэчываў і энергіі, гідрабіонты падзяляюцца на тры групы. Прадуцэнты – (вытворцы) ствараюць у працэсу аўтатрофнага жыўлення (фотасінтэз) арганічныя злучэнні з неарганічных (расліны, бактэрыі). Кансументы (спажыўцы) – жывёлы, якія жывяцца гатовым арганічным рэчывам у выглядзе жывых ці мёртвых. Рэдуцэнты (аднавіцелі) – бактэрыі, якія выкарыстоўваюць арганічнае рэчыва (рэшткі загінуўшых гідрабіонтаў у выглядзе донных адкладаў, раствораных і калоідных арганічных рэчываў) і раскладаюць яго да прасцейшых мінеральных соляў азота, фосфара і іншых элементаў, неабходных прадуцэнтам. У працэсу жыццядзейнасці гідрабіонатаў і узаемадзеяння іх з вадой і доннымі адкладамі ў вадаёмах ажыццяўляецца кругаварот рэчываў. Прадуцэнты дастаюць з вады мінеральныя элементы і ствараюць арганічнае рэчыва, якое потым выкарыстоўваецца кансументамі. Пры адміранні гідрабіонтаў абодвух груп накопліваецца мёртвае арганічнае рэчыва, якое рэдуцэнты аднаўляюць да мінеральных элементаў.

Асноўнымі колькаснымі паказчыкамі інтенсіўнасці біялагічных працэсаў ш вадаёмах з’яўляюцца біамаса і прадукцыя. Біямасса – агульная колькасць арганічнага рэчыва, якая заключана ў жывых арганізмах у дадзены моман часу, якая вызначаецца у вагавых адзінках на адзінку плошчы паверхні ці на адзінку аб’ёма вады (г/м2, кг/га, г/м3). Вызначаецца як агульная біамаса вадаёма, так і біамаса асобных груп гідрабіонтаў (планктона, бентаса, рыб).

Вадаёмы валодаюць біялагічнай прадуктыўнасцю – уласцівасцю ўтвараць арганічнае рэчыва ў выглядзе жывых арганізмаў, характарызуемае велічнынёй прадукцыі , г.зн. прырашчэннем біамасы за той ці другі прамежак часу. Асновай існавання гідрабіонтаў з’яўляецца пярвічная прадукцыя – арганічнае рэчыва, якое ўтвараецца ў працэсу фатасінтэзу галоўным чынам фітапланктонам і макрафітамі (автатрофамі). Другасную прадукцыю ўтвараюць гетератрофы. Канечнай прадукцыяй з’яўляецца нектон (рыбы), які часткова выкарыстоўваецца чалавекам. Біяпрадуктыўнасць вадаёмаў змяняецца разам са змяненнямі ў гідралагічным рэжыму возера.

Жыўленне ў жыццядзейнасці і распаўсюджванні гідрабіонтаў было ўлічана ў біялагічнай класіфікацыі азёр, распрацаванай А.Тінэманам і Е.Наўманам. У аснову гэтай класіфікацыі былі пакладзены ўмовы жыўлення гідрабіонтаў – трофнасць (trophos - ежа, корм). Згодна з класіфікацыяй азёры падзяляюцца на алігатрофныя (oligos - мала), эўтрофныя (еu – добра) і дістрофныя (dis - недастаткова).

У вадзе алігатрофных (малакормных) азёр утрымліваецца мала біягенных элементаў, жыццё развіта слаба. Вада азёр празрыстая, кіслароду ў іх дастаткова. Кругаварот рэчываў найбольш поўны ў параўнанні з другімі групамі азёр. Пагэтаму значных аб’ёмаў донных адкладаў не назіраецца. У донных адкладах перавагаюць мінеральныя часцінкі, арганізмаў мала. Гэта азёры, якія знаходзяцца сярод крышталічных горных пародаў, часта горныя (Байкал, цялецкае, Іссык-Куль і інш.). Эўтрофныя (многакормныя) азёры адрозніваюцца высокім утрыманнем біягенных элементаў і арганічнага рэчыва, інтенсіўным развіццём фітапланктону і прыбярэжных зарасляў макрафітаў. Кругаварот рэчываў няпоўны, пагэтаму значная частка арганічных рэшткаў адкладаецца на дне возера. Пры гэтым утвараюцца магутныя тоўшчы ілоў, багатых арганічнымі рэчывамі. Да эўтрофных азёр адносяцца пераважна невялікія, добра праграваемыя летам азёры лясной і лесастэпавай прыродных зон, з буйных азёр - Пскоўска-Чудское, Ільмень.

Да дістрофных (недастаткова кормныя) адносяцца пераважна азёры з забалочанымі вадазборамі. У іхвадзе утрымліваецца многа арганічных рэчываў, аднак галоўным чынам у выглядзе гібельных для гідрабіонтаў гумінавых кіслот. У азёрах назіраецца значный дэфіцыт кіслароду нават летам. Рыбы ў іх няма, гідрабіонты прадстаўлены імхамі. З цягам часу дістрофныя азёры звычайна затарфаваны і пераўтвараюцца ў балоты.

Трансфармацыя азёр (эвалюцыя) у нармальных прыродных умовах за геалагічны прамежак часу адбываецца шляхам пераходу алігатрофных вадаёмаў у эхўтрофныя, а затым і ў дыстрофныя і ў прканцы, у балота. Балота з’яўляецца канчатковым водным аб’ектам, у які пераўтвараюцца вадаёмы запаволенага вадаабмену.

Прыродны працэс эвалюцыі азёр па меры інтенсіўнага гаспадарчага асваення як саміх вадаёмаў, так і іх вадазбора, паскараецца. Адбываецца паскораны пераход возера да эўтрофнага тыпу (антрапагеннае эўтрафіраванне). Гэты працэс звязаны са значнымі паступленнямі у азёры біягшенных элементаў і, у першую чаргу, азота і фосфара, якія прыносяцца разам забруджанамі сцёкавымі водамі. Інтенсіўнае паступленне біягенных элементаў у азёры прыводзіць да бурнага развіцця фітапланктона – “цвіценню” вады. Якасць вады пагаршаецца – у вялікай колькасці накопліваецца арганічнае рэчыва, узнікае дэфіцыт кісларода нават летам і асабліва у гіпалімніоне, узрастае цветнасць вады. Вада становіцца непрыгоднай для гаспадарчага і бытавога выкарыстання, пагаршаюцца ўмовы жыцця гідрабіонтаў, назіраюцца заморы рыбы.

Прыкметы антрапагеннага эўтрафіравання азёр былі заўважаны ў некаторых азёрах Германіі яшчэ ў канцы Х1Х стагоддзя. Значных памераў яно дасягнула ў 50-60-х гг прошлага веку. Эўтрафіраванню падвяргаюцца не толькі малыя і сярэднія па велічыні азёры, але і такія як Вялікія амерыканскія азёры.

Асноўнымі прадстаўнікамі жыцця у азёрах з’яўляюцца фітапланктон, зоопланктон, бентас і макрафіты.



Фітапланктон стварае першасную прадукцыю, забяспечвае жыўленне гетератрофаў і з’яўляецца асноўнай кармавой базай вадаёма. У працэсу фатасінтэзу паляпшаецца газавы рэжым азёр, асіміліруецца свабодная вуглекіслата і прадуцыруецца кісларод. Аднак, “цвмценне” вады, асабліва блакітна-зяленых у летні перыяд пагаршае якасць вады. Гэта звязана з таксічнасцю блакітна-зяленых водарасцей, накапленнемарганічныхрэчываў у воднай масе, стратамі значнай колькасці кіслароду на яго разлажэнне. З “цвіценнем” вады звязана зніжэнне празрыстасці вады і антрапагеннае эўтрафіраванне азёр.

Зоопланктон – аснова ежы для рыбы – планктонафагаў. Некаторыя яго прадстаўнікі (фільтратары) садзейнічаюць асяданнюзавіслых рэчываў і асвятленню вады.

Бентас служыць аснаўной ежай для рыб – бентафагаў. Бактэрыі-рэдцценты – важнае звяно ў кругавароце рэчываў у азёрах Арганізмы – фільтратары дна асвятляюць ваду і драбяць грунты.

Макрафіты утвараюць прыбярэжныя зараслі і разам з фітапланктонам сінтэзіруюць і прадуцыруюць арганічнае рэчыва. Яны з’яўляюцца месцам жыхарства шэрага прадстаўнікоў зообентаса, для нерасту многіх відаў рыб, раёнам для жыцця моладзі, кормам для рыб – фітафагаў, птушак, баброў, андатры, месцам гняздоўя вадаплавючых птушак. Макрафіты з’яўляюцца канкурэнтамі фітапланктону у ежы, вышэйшыя водныя расліны ў некаторай ступені памяншаюць інтенсіўнасць “цвіцення” азёр. Яна таксама з’яўляецца фактарам біялагічнай ачысткі вадаёмаў ад забруджвання бытавымі і прамысловымі сцёкамі, фяноламі, нафтапрадуктамі. Марафіты выкарыстоўваюцца у якасці корму для буйной жывёлы, а ў бязлесных раёнах таксама як паліва і будаўнічы матэрыял. Разам з гэтым водныя расліны у працэсу транспірацыі павялічае выпарэнне з паверхні азёр у сярэднім у 1,3 разы ў лясной і стэпавх раёнах і у 1,5 разы ў паўпустынях і пустынях. У сувязі з гэтым памяншаецца паверхневы сцёк. Накапленне рэшткаў адмерлага планктону і макрафітаў прыводзіць да заілення азёр.
1   ...   5   6   7   8   9   10   11   12   13


База данных защищена авторским правом ©shkola.of.by 2016
звярнуцца да адміністрацыі

    Галоўная старонка