Electronic supplementary tables




Дата канвертавання22.04.2016
Памер213.12 Kb.

Shik, Hou et al. Towards a general model of superorganism life history

ELECTRONIC SUPPLEMENTARY TABLES

Table S1 Data used to assess scaling of worker metabolic rate (figure 1b). Microwatt conversions outlined in Hou et al. (2010). All metabolic data adjusted to 25°C assuming Q10 = 2 or using the empirically derived Q10 if provided by the study from which data were gathered. Data collected during this study from : *Barro Colorado Island (9° 09´ N, 79° 51´ W), a lowland tropical forest managed by the Smithsonian Tropical Research Institute in Panama from June to October 2010, or **grassland sites in central and southern Oklahoma and northern Texas from 17 May to 20 September 2008 and 27 May to 15 Aug 2009. Vouchers from species analyzed in this study are stored in the reference collection of MEK.


Species

Wet mass (mg)

Metabolic rate (Microwatts)

References

Acromyrmex versicolor

1.41

5.0

This study*

Anoplolepis steinergroeveri

4.94

14.1



Aphaenogaster cockerelli

4.72

82.5




Aphaenogaster treatae

2.98

18.42

This study**

Atta laevigata

15

35.88




Atta sexdens rubropilosa

15

50.72



Camponotus detritus

42.9

78




Camponotus fulvopilosus

43

63.4




Camponotus herculeanus

17.82

146.64



Camponotus laevigatus

19.15

117.8




Camponotus maculatus

42.49

51.1




Camponotus sericeiventris

40.2

73.2




Camponotus sp.

15.41

78.2




Camponotus vafer

4.51

58.8




Camponotus vicinus

107

143.5




Cataglyphis bicolor

34

37.8




Chelaner rothsteini

0.25

1.1




Crematogaster lineolata

1.23

8.36

This study**

Crematogaster robberscavesp

0.91

6.32

This study**

Cyphomyrmex wheeleri

0.35

4.02

This study**

Eciton hamatum

6

25.3




Forelius foetidus

0.1

1.3




Formica exsecta

4.05

21.9




Formica fusca

1.35

31.3




Formica occulta

1.3

19.5




Formica polyctena

8.6

53.43



Formica pratensis

12.77

37.66



Lasius alienus

1.38

6




Lasius flavus

1.87

11.73



Lasius niger

1.26

6.21




Lasius sitiens

0.63

3.30



Leptogenys attenuata

4

12.3




Leptogenys nitida

1.72

5.2




Leptogenys schwabi

8.96

21




Leptothorax acerovorum

0.37

5.1




Leptothorax unifasciatus

0.49

2.4




Messor capensis

13.7

38.3




Messor capitatus

3.14

16.2




Messor julianus

5.09

7.27




Messor pergandei

7.19

14.31




Mycocepurus smithii

0.23

3.28

This study*

Myrmica alaskensis

0.91

10.7




Myrmica rubra

2

10.17



Paraponera clavata

190

430.8




Pogonomyrmex californicus

5.92

9.3




Pogonomyrmex maricopa

11.07

40.6




Pogonomyrmex montanus

5.08

27.12




Pogonomyrmex occidentalis

7.96

12.8




Pogonomyrmex rugosus

15.42

50.81




Pogonomyrmex sp.

3.74

12.6




Pogonomyrmex subnitidus

6.34

24.69




Solenopsis invicta

2.96

6.90



Tapinoma sessile

0.60

11.17

This study**

Tetramorium caespitum

0.50

2.47




Trachymyrmex septentrionalis

0.96

6.77

This study**


Table S2 Data used to Assess queen metabolic rate (figure 1b)

Species


Wet mass (mg)

Metabolic rate (microwatt)

References

Acromyrmex versicolor

10.90

13.19

This study*

Aphaenogaster treatae

8.60

22.61

This study**

Atta laevigata

762

372.43




Atta sexdens rubropilosa

605

953.18




Camponotus anderseni

4.85

22.77




Camponotus herculeanus

109.46

259.32



Crematogaster lineolata

10.73

38.50

This study**

Crematogaster robberscavesp

6.23

16.29

This study**

Cyphomyrmex wheeleri

0.71

3.91

This study**

Formica polyctena

33.58

257.43



Formica pratensis

35.17

110.11



Iridiomyrmex (Linepithema)

humilis

2.34

16.18




Lasius flavus

16.63

47.11




Lasius niger

23.63

42.12



Lasius sitiens

18.12

32.94




Messor julianus

21.11

25.69



Messor pergandei

39.4

47.41




Monomorium minim

1.53

3.64

This study**

Mycocepurus smithii

1.07

3.63

This study*

Myrmica rubra

4.6

19.10




Pheidole dentata

7.30

17.98

This study**

Pheidole morrisi

9.23

30.22

This study

Pogonomyrmex montanus

13.53

79.04




Pogonomyrmex rugosus

47.65

93.07




Pogonomyrmex subnitidus

16.18

93.06




Solenopsis invicta

14.6

26.45




Tapinoma sessile

2.66

20.10

This study**

Tetramorium caespitum

6.68

20.33




Trachymyrmex septentrionalis

1.60

8.01

This study**


Table S3 Data used to assess colony metabolic rate (figure 1c). Colony mass was the total mass of all individual ants and brood. N indicates number of colonies used to calculate species average. Number of colonies not provided for Ref. 15.


Species

N

Wet mass (mg)

Metabolic rate (microwatts)

Source

Brachymyrmex JTsp1

1

1.57

23.15

This study*

Crematogaster sp.

1

52.1

362.71

This study*

Crematogaster sumichrasti

1

14.78

105.91

This study*

Ectatomma ruidum

25

491.28

1623.61

(62)

Gnamptogenys horni

2

45.26

101.73

This study*

Hypoponera distiguenda

1

7.0

26.68

This study*

Nylanderia guatemalensis

1

11.10

72.97

This study*

Odontomachus meinerti

1

44.13

77.15

This study*

Pachycondyla harpax (foundress)

1


7.67

36.73

This study*

Pachycondyla villosa

1

5732.7

14248.68

This study*

Pheidole dassypyx

4

29.55

157.12

This study*

Pheidole harrisonfordi

2

5.38

35.79

This study*

Pheidole multispina

1

15.53

87.65

This study*

Pheidole rugiceps

3

13.39

90.04

This study*

Pheidole ruida

4

7.66

58.28

This study*

Probolomyrmex bolivensis

1

0.88

7.39

This study*

Pyramica brevicornis

1

0.21

3.73

This study*

Pyramica gundlachi

1

0.86

10.89

This study*

Pyramica subedentata

1

5.81

27.63

This study*

Pyramica zeteki

2

2.70

20.96

This study*

Solenopsis bs

1

4.04

21.66

This study*

Solenopsis JTsp1

3

1.25

18.06

This study*

Solenopsis sp.5

1

1.13

28.07

This study*

Wasmannia auropunctata

2

14.85

110.54

This study*

Monomorium minim

1

14.76

76.09

This study**

Aphaenogaster treatae

1

606.70

2490.05

This study**

Pheidole dentata

17

360.17

1667.45




Leptothorax unifasciatus

1

480

672.60




Odontomachus bauri




11000

42511.12




Camponotous rufipes




12500

32205.39




Zacryptocerus depressus




2100

3381.57




Camponotus fulvopilosus

4

50000

73800




Pogonomyrmex californicus

13

2223

2416





Table S4 Data used to assess queen lifespan (figure 2a)


Species

Queen mass (mg)

LS (days)

References

Aphaenogaster rudis

6.53

3175.5




Ectatomma ruidum

28.1

2226.5




Formica exsecta

22.9

7300




Formica selysi

19.53

3650




Harpagoxenus saltator

105

1460




Lasius alienus

22.9

2263




Lasius niger

82

7190.5




Myrmica sabuleti

8.27

912.5




Solenopsis invicta

11.9

5110




Formica fusca

21

4015




Formica rufibarbis

31.6

3540.5




Myrmica sulcinodis

5.6

1642.5




Myrmica ruginodis

9.32

547.5





Table S5 Data used to assess biomass production rate (figure 2b). Production rate was calculated as ((egg number/queen/day)*(individual worker mass)). Subcolony mass was calculated as ((worker number*individual worker mass)/queen number).


 

Species


Egg number /queen/day

Colony size

Queen number

Queen wet mass (mg)

Worker wet mass (mg)

References

Acanthomyrmex ferox

1.44

27

1




7.36




Paratrechina fulva

21

900

1




0.54

and this study

monomorium pharaonis

1.5

25

1




0.33




Myrmica rubra

1.72

3.20E+02

1




3.02




Formica rufa

300

1.00E+05

1




9




Eciton burchelli

3500

649979

1




46.6




Eciton hamatum

1500

250000

1




42.3




Dorylus wilverthi

116666

20000000

1




19.15




Harpagoxenus saltator

1.5

65

1

105

61.5




Aphaenogaster rudis

1.06

388

1

6.53

7.12




Wasmannia auropunctata

7.1

75

1

2.25

0.14

and this study

Crematogaster ashmeadi

240

10000

1

15.2

0.8




Leptothorax unifasciatus

13

325

1

3.02

0.70




Myrmecia gulosa

10

887

1

742

366.94

and this study

Linepithema humile

15

728

2.4




1.09

and this study

Lasius neglectus

12.9

1.12E+08

35504




1.09




Formica polyctena

10

450000

500

33.58

9.32




Leptothorax acervorum

1.05

161

9.8

3.13

2.82




Plagiolepis pygmaea

0.5

391

17




0.093




Solenopsis invicta

306

220000

32

11.9

2.41




Formica fusca

1.35

500

3.3

21

6.41




Monomorium pharaonis

6

800

30

3.34

0.44



Myrmica tahoensis

16.56

130

2.5




4.57

and this study

Myrmica ruginodis

3.5

600

2.5

9.32

4.86




Myrmica sulcinodis

0.83

742

8.6

5.6

3.03




REFERENCES

1. José, M., Hebling, A., Penteado, C. H. S. & Mendes, E. G. 1992 Respiratory regulation in workers of the leaf cutting ant Atta sexdens rubropilosa Forel, 1908. Compar. Biochem. Physiol. A. Physiol. 101, 319-22.

2. Nielsen, M. G. 1986 Respiratory rates of ants from different climatic areas. J. Ins. Physiol. 32, 125-31.

3. Kneitz, G. 1965 Untersuchungen zum Atmungsstoffwechsel der Arbeiterinnen von Formica polyctena Foerst.(Hym., Formicidae). Proc Vth Congr Int Union Study of Social Insects, Toulouse. 277-91.

4. Boomsma, J., Keller, L. & Nielsen, M. 1995 A comparative analysis of sex ratio investment parameters in ants. Ecology 9, 753.

5. Boomsma, J. & Isaaks, J. 1985 Energy investment and respiration in queens and males of Lasius niger (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 18, 19-27.

6. Lighton, J. & Berrigan, D. 1995 Questioning paradigms: caste-specific ventilation in harvester ants, Messor pergandei and M. julianus (Hymenoptera: Formicidae). J. Experim. Biol. 198, 521-530.

7. Brian, M. 1973 Feeding and growth in the ant Myrmica. J. Anim. Ecol. 42, 37-53.

8. MacKay, W. P. 1985 A comparison of the energy budgets of three species of Pogonomyrmex harvester ants (Hymenoptera: Formicidae). Oecologia 66, 484-94.

9. Vogt, J. T. & Appel, A. G. 1999 Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Ins. Physiol. 45, 655-66.

10. Jensen, T. & Nielsen, M. 1975 The influence of body size and temperature on worker ant respiration. Nat Jutland. 18, 21-5.

11. Chown, S. L., Marais, E., Terblanche, J. S., Klok, C. J., Lighton, J. R. B. & Blackburn, T. M. 2007 Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282-90.

12. Nielsen, M. G., Christian, K., Henriksen, P. G. & Birkmose, D. 2006 Respiration by mangrove ants Camponotus anderseni during nest submersion associated with tidal inundation in Northern Australia. Physiol. Ent. 31, 120-6.

13. Shik, J. Z. 2010 The metabolic costs of building ant colonies from variably sized subunits. Behav. Ecol. Sociobiol. 64, 1981-90.

14. Martin, P. J. 1991 Respiration of the ant Leptothorax unifasciatus (Hymenoptera, Formicidae) at individual and society levels. J. Ins. Physiol. 37, 311-8.

15. Jaffé, K. & Fonck, C. 1994 Energetics of social phenomena: Physics applied to evolutionary biology. Il Nuovo Cimento D 16, 543-53.

16. Lighton, J. R. B. 1989 Individual and whole colony respiration in an African Formicine ant. Funct. Ecol. 3, 523-30.

17. Waters, J., Holbrook, C., Fewell, J. & Harrison, J. 2010 Allometric scaling of metabolism, growth, and activity in whole colonies of the seed-harvester ant Pogonomyrmex californicus. Am. Nat. 176, 501-10.

18. Shik, J. Z. 2008 Ant colony size and the scaling of reproductive effort. Funct. Ecol. 22, 674-81.

19. Keller, L. 1998 Queen lifespan and colony characteristics in ants and termites. Ins. Soc. 45, 235-46.

20. Hou, C., Kaspari, M., Vander Zanden, H. B., Gillooly, J. F. 2010 Energetic basis of colonial living in social insects. Proc. Natl. Acad. Sci. USA. 107, 3634-8.

21. Collingwood, C. A. 1979 The Formicidae (Hymenoptera) of Fennoscandia and Denmark. Klampenborg, Denmark: Scandinavian Science Press.

22. Rosset, H. & Chapuisat, M. 2007 Alternative life-histories in a socially polymorphic ant. Evol. Ecol. 21, 577-88.

23. Peeters, C., Liebig, J. & Holldobler, B. 2000 Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator. Ins. Soc. 47, 325-32.

24. Boomsma, J. J., Vanderlee, G. A. & Vanderhave, T. M. 1982 On the production ecology of Lasius niger (Hymenoptera, Formicidae) in successive coastal dune valleys. J. Anim. Ecol. 51, 975-91.

25. Vander Meer, R. & Morel, L. 2007 Oviposition Process of Solenopsis invicta (Hymenoptera: Formicidae) queens. Ann. Ent. Soc. Amer. 100, 758-62.

26. Gobin, B. & Ito, F. 2000 Queens and major workers of Acanthomyrmex ferox redistribute nutrients with trophic eggs. Naturwiss. 87, 323-6.

27. Arcila, A. M., Ulloa-Chacon, P. & Gomez, L. A. 2002 Factors that influence individual fecundity of queens and queen production in crazy ant Paratrechina fulva (Hymenoptera : Formicidae). Sociobiol. 39, 323-34.

28. Nielsen, M. G. & Josens, G. 1978 Producion by ants and termites. In Production Ecology of Ants and Termites (ed. M. V. Brian). New York: Cambridge University Press.

29. Beckers, R., Goss, S., Deneubourg, J. L. & Pasteels, J. M. 1989 Colony size, communication, and ant foraging strategy. Psyche 96, 239-56.

30. Jeanson, R., Ratnieks, F. L. W. & Deneubourg, J. L. 2003 Pheromone trail decay rates on different substrates in the Pharaoh's ant, Monomorium pharaonis. Physiol. Ent. 28, 192-8.

31. Brian, M. V. 1965 Social Insect Populations. London: Academic Press Inc.

32. Hölldobler, B. & Wilson, E. O. 1990 The ants. Cambridge: Belknap Press of Harvard University Press.

33. Elton, C. 1932 Territory among wood ants (Formica rufa L.) at picket hill. J. Anim. Ecol. 1, 69-76.

34. Powell, S. & Franks, N. R. 2006 Ecology and the evolution of worker morphological diversity: a comparative analysis with Eciton army ants. Funct. Ecol. 20, 1105-14.

35. Gotwald, W. H. 1982 Army ants. In Social Insects Vol. 4 (ed. H. R. Hermann), pp. 157-254. New York: Academic Press.

36. Southerland, M. 1988 The effects of temperature and food on the growth of laboratory colonies of Aphaenogaster rudis Emery (Hymenoptera: Formicidae). Ins. Soc. 35, 304-9.

37. Ulloa-Chacon, P. & Cherix, D. 1988 editors. Biological aspects of the little fire ant. Wasmannia auropunctata (R.).

38. Tschinkel, W. R. 2002 The natural history of the arboreal ant, Crematogaster ashmeadi. J. Ins. Sci. 2:12.

39. King, J. R. & Porter, S. D. 2007 Body size, colony size, abundance, and ecological impact of exotic ants in Florida's upland ecosystems. Evol. Ecol. Res. 9, 757-74.

40. Martin, P., Loreau, M. & Josens G. 1995 Production in the ant Leptothorax unifasciatus (Hymenoptera, Formicidae). Act. Oecol. 16, 295-311.

41. Dietemann, V., Hölldobler, B. & Peeters C. 2002 Caste specialization and differentiation in reproductive potential in the phylogenetically primitive ant Myrmecia gulosa. Ins. Soc. 49, 289-98.

42. Kaspari, M., Vargo, E. L. 1995 Colony size as a buffer against seasonality: Bergmann's Rule in social insects. Am. Nat. 145, 610-32.

43. Angus, C. J., Jones, M. K. & Beattie, A. J. 1993 A Possible Explanation for Size Differences in the Metapleural Glands of Ants (Hymenoptera, Formicidae). J. Austral. Ent. Soc. 32, 73-7.

44. Abril, S., Oliveras, J. & Gomez, C. 2008 Effect of temperature on the oviposition rate of Argentine ant queens (Linepithema humile Mayr) under monogynous and polygynous experimental conditions. J. Ins. Physiol. 54, 265-72.

45. Espadaler, X. & Rey, S. 2001 Biological constraints and colony founding in the polygynous invasive ant Lasius neglectus (Hymenoptera, Formicidae). Ins. Soc. 48, 159-64.

46. Espadaler, X. & Rey, S., Bernal V. 2004 Queen number in a supercolony of the invasive garden ant, Lasius neglectus. Ins. Soc. 51, 232-8.

47. Cremer, S., Ugelvig, L. V., Lomme, S. T. E., Petersen, K. S. & Pedersen JS. 2006 Attack of the invasive garden ant: aggression behaviour of Lasius neglectus (Hymenoptera: Formicidae) against native Lasius species in Spain. Myrmecologische Nachrichten. 9, 13-9.

48. Rosengren, R., Sundstrom, L. & Fortelius, W. 1993 Monogyny and polygyny in Formica ants: The result of alternative dispersal tactics. In Queen number and sociality in insects (ed. L. Keller), pp. 308-333. New York: Oxford University Press.

49. Bourke, A. F. G. 1991 Queen Behavior, Reproduction and Egg Cannibalism in Multiple-Queen Colonies of the Ant Leptothorax acervorum. Anim. Behav. 42, 295-310.

50. Keller, L. & Passera, L. 1990 Fecundity of ant queens in relation to their age and the mode of colony founding. Ins. Soc. 37, 116-30.

51. Goodisman, M. A. D. & Ross, K. G. 1996 Relationship of queen number and worker size in polygyne colonies of the fire ant Solenopsis invicta. Ins. Soc. 43, 303-7.

52. Ayre, G. 1966 Colony size and food consumption of three species of Formica. Ent. Experim. Applic. 9, 461-7.

53. Hannonen, M., Helanterä, H. & Sundström L. 2004 Habitat age, breeding system and kinship in the ant Formica fusca. Molec. Ecol. 13, 1579-88.

54. Cole, A. C. J. 1940 A guide to the ants of the Great Smoky Mountains National Park, Tennessee. Amer. Mid. Nat. 24, 1-88.

55. Kao, S. M. & Su, T. H. 1995 The Effect of Fenoxycarb and Pyriproxyfen on the Egg Production of the Pharaoh ant Monomorium pharaonis (Hymenoptera:Formicidae). Chin. J. Entomol. 15, 227-37.

56. Evans, J. D. 1996 Competition and relatedness between queens of the facultatively polygynous ant Myrmica tahoensis. Anim. Behav. 51, 831-40.

57. Wardlaw, J. & Elmes, G. 1995 Trophic eggs laid by fertile Myrmica queens (Hymenoptera: Formicidae). Ins. Soc. 42, 303-8.

58. Seppa, P. 1994 Sociogenetic Organization of the Ants Myrmica ruginodis and Myrmica lobicornis - Number, Relatedness and Longevity of Reproducing Individuals. J. Evol. Biol. 7, 71-95.

59. Bonser, R., Wright, P. J., Bament, S. & Chukwu, U. O. 1998 Optimal patch use by foraging workers of Lasius fuliginosus, L. niger and Myrmica ruginodis. Ecol Entomol. 23, 15-21.

60. Pedersen, J. S. & Boomsma, J. J. 1999 Positive association of queen number and queen-mating frequency Myrmica ants: a challenge to the genetic-variability hypotheses. Behav. Ecol. Sociobiol. 45, 185-93.

61. Elmes, G. W. 1974 Colony populations of Myrmica sulcinodis Nyl (Hymenoptera: Formicidae). Oecologia 15, 337-43.



62. Kay, A.D., Shik, J.Z., Van Alst, A., Kaspari, M. (2012) Diet composition does not affect ant colony tempo. Functional Ecology, 26: 317-323.






База данных защищена авторским правом ©shkola.of.by 2016
звярнуцца да адміністрацыі

    Галоўная старонка